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We study the large-time dynamics of a Markov process whose states are finite
directed graphs. The number of the vertices is described by a supercritical
branching process, and the edges follow a certain mean-field dynamics deter-
mined by the rates of appending and deleting. We find sufficient conditions
under which asymptotically a.s. the order of the largest component is propor-
tional to the order of the graph. A lower bound for the length of the longest
directed path in the graph is provided as well. We derive an explicit formula for
the limit as time goes to infinity, of the expected number of cycles of a given
finite length. Finally, we study the phase diagram.

KEY WORDS: Branching processes; dynamical random graphs; phase transi-
tion; randomly grown networks.

1. INTRODUCTION

Dynamical random networks has become a subject of intensive study in
mathematics as well as in physics over the last few years (see, e.g., a review
by Strogatz (1)). Here are some examples: random grammars on graphs
(Malyshev (2)), the ‘‘small-world’’ networks (Watts and Strogatz, (3) Barbour
and Reinert (4)), scale-free networks (Barabási et al., (5) Bollobás et al. (6)),
randomly grown networks (Callaway et al. (7)). We shall study a random
graph grammar model that shares properties of branching processes,
random graphs and randomly grown networks affected by the aging of the
connections as well as nodes.
Starting with the paper by Erdös, (8) the central and most studied

model in random graph theory is Gn, p, which is a graph on n vertices with a
probability p of any edge. The most intriguing feature of this model is the



phase transition at p=1/n. For detailed studies of this model consult
Bollobás, (9) and Janson et al. (10) The graph process we consider here can be
viewed as a dynamic non-homogeneous generalization of the model Gn, p,
with n being replaced by a random process with non-decreasing in time
unbounded trajectories and with the probability of an edge between any
two vertices being a function of time and of the vertices themselves. More
precisely, our model is defined as follows.
Consider on some probability space (W, S, P) a Markov process with

the states in the space of finite graphs with directed multiple edges (i.e.,
zero, one, or even more than one edge are allowed in either direction
between two nodes); in short, directed multi-graphs. The evolution of this
process is described by the rates of appending new vertices and edges, and
the rate of deleting edges as follows. Let V(t) denote the set of vertices at
time t. We shall define two types of edges, call them type 1 and type 2 and
denote their sets L1(t) and L(t), respectively, at time t. Assume, at t=0
there is one vertex with no edges, i.e., we set |V(0)|=1 and L1(0)=L(0)
=”. Then from each vertex of the graph we draw with rate l1 a new type
1 edge to a new vertex. In another words with every vertex in the graph we
associate a Poisson process with intensity l1, every occurrence of which
corresponds to the appearance of a new type 1 edge and a new vertex in the
graph. As soon as there are at least two vertices in the graph, from each
vertex we draw with rate l2 a new type 2 edge to a vertex, which we choose
with equal probabilities among the rest of existing vertices in the graph. By
doing this we add a new edge to the setL. Any edge in the graph is deleted
with rate m, which means that the lifetime of any edge is exponentially
distributed with mean value 1/m. Thus we shall call the age of an edge
the time since its appearance. Finally, we assume that all the processes of
appending and deleting are independent. Malyshev (2) first introduced and
studied this process.
Notice that the subgraph associated with the type 2 edges of this

model interpolates between two well-studied classes of models, which have
widely different properties. If we do not delete the edges in our model,
i.e., let m=0, we obtain a continuous-time generalization of the randomly
grown network. On the other hand, when we let mQ., our graph behaves
like the Gn, p model (for the details we refer to Turova (11)). Hence, this
model provides a unified overview of two very different models and the
relations between them. In particular, it allows one to explain the dramatic
difference in the macro-behaviour of randomly grown networks and
random graphs as observed previously by physicists (see Callaway et al. (7)).
Recall that the processes studied in random graph theory are defined

on a fixed set of vertices, while the graph acquires more edges. In our
model the number of vertices |V(t)| is a random process itself, it is a binary
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fusion (or Yule process) having E |V(t)|=el1t and the asymptotic behaviour

|V(t)| e−l1tS t as tQ.,

where t follows Exp(1)-distribution (see, e.g., Athreya and Ney (12)). The
dynamics of this process breaks the homogeneity of the graph structure.
Furthermore, by deleting edges in our model we lose another nice property
of the graph process associated with Gn, p, namely, the monotonicity of
acquiring edges. All this makes the standard results in random graph
theory not readily applicable.
Besides its novelty and close relation to areas of current interest in

probability theory, discrete mathematics and physics, another strong
reason to investigate this type of process is its potential application in
social sciences and biology. Indeed, our model captures the following
properties of the social networks: the uniform boundedness of the degrees
of the vertices and the decay of the old connections (Jin et al. (13)).
Neural networks provide especially nice examples of complex dynamic

random graph structure (see, e.g., Xing and Gerstein (14)). In this setup the
vertices of the graph denote neurons, V(t) represents an area of current
interaction, while the appearance of any new edge is treated as an impulse
between the corresponding neurons along synaptic connections. Naturally,
the life-time of an edge represents the duration of an impulse. Thus we get
a model for the spreading of the impulses in a neural network, since the
spike trains of the neurons are often approximated by a Poisson process
(see, e.g., Prut et al. (15)).
Just as the theory of random graphs is mainly concerned with asymp-

totic behavior, our main interest here in our study, as far as applications,
is in the large-time properties of our dynamic graph model. We shall make
further steps towards the complete description of the phase diagram for our
model. We note that Malyshev (2) obtained the first results on this model.

The Main Results

We investigate the dynamics of the directed multi-graph defined above
on the set of vertices V(t), and whose set of edges is L(t), i.e., the type 2
edges only. We shall denote this graph

Gd, m(t)=(V(t),L(t)), t \ 0,

where index ‘‘d ’’ stands for ‘‘directed’’ and ‘‘m’’ stands for ‘‘multi-.’’ For
any directed multi-graph Gd, m we shall define a directed graph Gd and a
non-directed graph G in the following natural way. Either of these graphs
has the same set of vertices as Gd, m. There is an edge from vertex v to vertex
vŒ in Gd if and only if there is at least one edge from vertex v to vertex vŒ
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in Gd, m. Correspondingly, there is a non-directed edge between two vertices
in G if and only if there is at least one edge between these two vertices
in Gd, m. An ordered set of different vertices in a directed graph is called a
directed path, if from any vertex of this set except the last one, there is an
edge to the consecutive vertex of this set. The length of the path is the
number of its edges.
To formulate our results we introduce first for any T > 0, l1 > 0 and

m \ 0, a function

h(T, l1, m)=˛
e−mT−e−l1T

l1−m
, if m ] l1,

e−l1T T, if m=l1,

(1.1)

and derive

h̄(l1, m) —max
T > 0
h(T, l1, m)=˛

1
l1
1 m
l1
2

m/l1
1−m/l1, if m ] l1,

1
l1
e−1, if m=l1.

(1.2)

Theorem 1.1. (I) If the parameters l1, l2, m satisfy

2l2 h̄(l1, m) > 1 (1.3)

then with probability tending to one as tQ., the largest connected com-
ponent of the graph G(t) contains at least a |V(t)| vertices, where

a= sup
T > 0 : 2l2h(T, l1, m) > 1

b(T) e−l1T

with b(T)=b(T, l1, l2, m) defined by

b(T)+exp{−b(T) 2l2h(T, l1, m)}=1.

(II) Let X(Gd(t)) denote the length of the longest directed path in
Gd(t). If

l2 h̄(l1, m) > 4 log 3, (1.4)

then with

c=max
T > 0

311− 4 log 3
l2h(T, l1, m)

2 e−l1T4 (1.5)
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we have

P{X(Gd(t)) \ c |V(t)|}Q 1 as tQ.. (1.6)

Remark 1.1. It will be seen from the proof, that under the condition
(1.4) a long path can be composed entirely of those edges whose age is not
greater than a constant T0, such that

c=11− 4 log 3
l2h(T0, l1, m)

2 e−l1T0. (1.7)

This implies that the process of link removal, regarded usually in a
negative sense as a ‘‘permanent random damage’’ to a network (e.g.,
Dorogovtsev and Mendes (16)), may have, in fact, a positive effect on the
efficiency of the network. Namely, there is no need to preserve all the con-
nections in order to maintain a giant component as long as the system
shows sufficient growth. Also, it is clear that unlike the scale-free networks
(Albert et al. (17)) our model is robust to the deletion of any o(el1t) number
of nodes, since the average degree of any vertex is bounded by a constant
2l2/m.
Next we find the limit for the expected value of the number of the

directed cycles in the graph Gd(t). For any k \ 3 and for any k different
vertices v1,..., vk we shall call a set

C(v1,..., vk)={(v1, v2), (v2, v3),..., (vk, v1)} (1.8)

a k-cycle on these vertices.

Theorem 1.2. Let Ck(t) denote the number of directed k-cycles in
the graph Gd(t). If m > 0 then for any fixed k \ 3

Ck(l2, m, l1) :=lim
tQ.

ECk(t)

=
1
k
lk2E D

k

i=1
h 1 1
l1
(gi Ngi+1), l1, m2 exp{gi Ngi+1}, (1.9)

where g1,..., gk are independent random variables with a common Exp(1)
distribution, and gk+1 — g1.

This is the first exact result on the asymptotic structure of a non-
homogeneous random graph model.
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Remark 1.2. It will be seen in the proof below that the probability
of an edge in our graph is bounded from above by const/|V(t)|. Thus using
the same argument as in random graph theory (see Ballobás, (9) p. 78) we
get the following statement. Although our formula (1.9) concerns the total
number of cycles, in fact, these cycles almost surely have disjoint sets of
vertices. Clearly, this refers only to the cycles of a fixed length.

Notice that information on cycles is of a particular interest for the
applications, since the cycles are the most stable structures under certain
dynamics in the neural networks (see, e.g., study by Xing and Gerstein, (14)

and Turova (18)).

Remark 1.3. Formula (1.9) has a particularly simple form in the
case l1=m, namely

lim
tQ.

ECk(t)=
1
k
1l2
m
2k E D

k

i=1
gi Ngi+1. (1.10)

Remark 1.4. For the non-directed paths and cycles statements (1.4),
(1.5) and (1.9), (1.10), remain valid with a replacement of l2 by 2l2.

Observe the monotonicity property of our model with respect to the
parameter l2. Namely, if we fix the parameters l1 and m, the connectivity
of the graphs increases with l2. Thus one expects that there is a critical
value, call it lcr2=l

cr
2 (l1, m), over which asymptotically almost every graph

has a giant component whose order is proportional to the order of the
graph, and below which almost every graph G(t) does not have such com-
ponent. The first statement of Theorem 1.1 gives us an upper bound
for lcr2 :

lcr2 <
m

2
1l1
m
2

l1/m

l1/m−1. (1.11)

Furthermore, Theorem 1.2 makes plausible the following conjecture on the
exact value of lcr2 . Recall the well-known result on the model Gn, p with
p=c/n. It is proved (see Janson et al. (10)) that in the supercritical case c > 1
a substantial proportion of the vertices of the giant component of Gn, p
belongs to cycles. Hence, conjecturing that the giant component in our case
has a similar structure, one may expect that the critical value lcr2 equals to

l̃cr2 :=sup 3x > 0 : C
.

k=3
Ck(2x, m, l1) <.4 ,
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which by the formula of Theorem 1.2 can be found as the smallest positive
root of the following hypergeometric function

1+C
.

n=1

1
n!
1 −2x
m
2n D

n

l=1

1 1
1+(l−1) m/c

2=0 .

Notice that as an easy corollary of Theorem 1.2 one gets

l̃cr2 >
m

2
=1+l1

m
.

The first statement of Theorem 1.1 improves Theorem 3 of Malyshev. (2)

His result states under the conditions 2l2 > m and l1 ° l2, the existence of
a giant connected component in the limiting non-directed graph associated
with the graph (V(t),L1(t) 2L(t)), which includes the type 1 edges.
Moreover, due to Theorem 2 of Malyshev, (2) the condition l1+2l2 > m is
necessary for the existence a.s. of a giant component in the graph including
type 1 edges. The proofs of Malyshev (2) use mainly the mean values of
graph characteristics to indicate the area of parameters where the random
graph theory is valid.
Here we construct an approximate model in order to obtain the

asymptotics and the rates of convergence for the probabilities of the edges.
Notice that to get only the asymptotics of the conditional probability of
any edge is a relatively easy task. This can be done using queuing theory.
However, the major difficulty is to pass to the unconditional probabilities
taking into account the growing (in time) number of the ‘‘small contribu-
tions.’’ Our approach via discrete approximation allows us to control this
situation by an appropriate scaling. Also, it enables us to find a homoge-
neous subgraph, and therefore to place our analysis within the framework
of the theory of random graphs in the proof of Theorem 1.1. To prove
Theorem 1.2 we exploit the non-homogeneity of the model. Note that our
method is not limited to the Yule process |V(t)|, and can be applied to dif-
ferent random structures as long as the dynamics of the edges is governed
by the independent Poisson processes. The later seem to be a necessary
constraint in order to have (conditional) independence of edges.
A challenging problem for future study is to describe the self-organiz-

ing behaviour of the dynamical graphs, where the degree of a vertex
depends on a local history of this vertex itself. A related static model of
percolation on a triangle lattice was treated analytically by Jonasson (19) and
Häggström and Turova. (20) However, for a dynamical model only compu-
tational results for a finite graph are available at present (e.g., Jin et al. (13)).
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Note that in the paper of Malyshev (2) other models with different
dynamics were introduced and studied as well. Krikun (21) found the
asymptotics for the mean values of the longest tree associated with the type
1 edges. We also remark here that, following ideas of Peres, (22) our graph
model can be viewed as a certain tree-indexed Markov chain. This is espe-
cially the case when type 1 edges are included. This observation may aid
the detailed study of phase transitions and other properties of the model.
We shall develop this approach elsewhere.
The rest of the paper is organized as follows. After we define and

study an approximation model in Section 2, we prove Theorem 1.1 and
Theorem 1.2 in Sections 3 and 4, respectively.

2. APPROXIMATION

2.1. The Model

Let 0 < D < 1 be fixed arbitrarily. We define on the same probability
space a graph process Gd, m(t) whose set of vertices is V(t) introduced
above, but whose edges can be appended or deleted only at the moments
D, 2D,..., according to the following rule. Set Gd, m(0)=Gd, m(0) as in the
original model. Let further L(t) denote the set of the edges of the graph
Gd, m(t), and Lv(t) denote for any v ¥ V(t) the set of the outcoming edges
from the vertex v at time t, so that

L(t)= 0
v ¥ V(t)

Lv(t).

Here we assume that pair (v, vŒ) represents a directed edge from the vertex
v to the vertex vŒ. We shall call v the beginning and vŒ the end of the edge
(v, vŒ).
Given the graph Gd, m(nD)=(V(nD), L(nD)) for any fixed n \ 0, define

Gd, m(t)=(V(t), L(nD)), nD < t < (n+1) D.

Next we set for any v ¥ V(nD)

Lv((n+1) D)=L
old
v ((n+1) D) 2 Lnewv ((n+1) D), (2.1)

where Loldv ((n+1) D) is a subset of Lv(nD) such that any element of Lv(nD)
belongs also to Loldv ((n+1) D) with a probability e

−mD, while the set
Lnewv ((n+1) D) consists of the new edges which are defined as follows.
Recall that in the definition of Gd, m(t) we associate with any vertex
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v ¥ V(nD) a Poisson process with intensity l2, call it Yv, whose occurrences
correspond to the moments of appearance of new edges (of type 2) from
the vertex v. So we set here

|Lnewv ((n+1) D)|=˛ C
Yv((n+1) D)−Yv(nD)

i=1
ti, if Yv((n+1) D)−Yv(nD) > 0,

0, otherwise, (2.2)

where ti are i.i.d. Bernoulli random variables with the parameter e−mD. The
end of any edge from Lnewv ((n+1) D) is distributed uniformly over the set
V(nD)0{v}, i.e., for any vŒ ¥ V(nD)0{v} and k \ 2

P{(v, vŒ) ¥ Lnewv ((n+1) D) | |V(nD)|=k}=
1
k−1

. (2.3)

Finally, define

Gd, m((n+1) D)=(V((n+1) D), L((n+1) D)),

where

L((n+1) D)= 0
v ¥ V(nD)

Lv((n+1) D)

with Lv provided by (2.1).
The rate of this approximation is given by the following proposition.

Proposition 2.1. There is a positive constant C such that for any
T > D, integers 0 < y [ s [ t=[T

D
], and an event

Bs, y={us ¥ V(sD)0V((s−1) D), vy ¥ V(yD)0V((y−1) D)}

one has

|P{(us, vy) ¥ L(T) | |V((s−1) D)|=V̄s−1, Bs, y}

−P{(us, vy) ¥L(T) | |V((s−1) D)|=V̄s−1, Bs, y}| [ C
D

V̄s−1
. (2.4)

The proof of this result is straightforward but lengthy. For the sake of
brevity we refer for its proof to Turova. (23)
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2.2. Probabilities of Edges

Consider the graph Gd, m(T). We shall label its edges as follows. Let
L(S, T) for any 0 [ S [ T denote the set of the edges which appeared at
time S. We call them the edges of the Sth generation. Clearly,

L(T)=0
5T
D
6

n=1
L(nD, T), (2.5)

and

L(nD, T)= 0
v ¥ V((n−1) D)

Lv(nD, T)

for any n > 0, where Lv(S, T) denotes the subset of the edges of L(S, T)
outcoming from v.

Remark 2.1. Conditionally on v ¥ V(nD) the random sets Lv(sD, tD)
and Lv(sŒD, tD) are independent for any n < s < sŒ [ t. If in addition, we
condition on vŒ ¥ V(nŒD), where nŒ \ n and vŒ ] v, then the sets Lv(sD, tD)
and LvŒ(sD, tD) are independent for all nŒ < s [ t, and |Lv(sD, tD)|=d

|LvŒ(sD, tD)|.

Proposition 2.2. Conditionally on v ¥ V((n−1) D) where 0 < n [ t,
the number of the edges |Lv(nD, tD)| follows Po(Dl2e−m D(1+t−n))- distribution.

Proof. The proof is an immediate observation that according to the
definition (2.2) the number of edges appeared from the vertex v at time nD,
follows Po(l2De−mD)-distribution. This number we can consider as an
increment of the Poisson process with intensity l2e−mD within a time-inter-
val D. Then the process of deleting edges is equivalent to thinning of this
Poisson process with probability e−mD. Since this thinning happens inde-
pendently t−n times (after each time interval D), the result follows. L

Next we shall derive formulae for the probabilities of the edges in
Gd, m(t). It is convenient for the simplicity of further notations to define
also V(t)=”=L(t) for any t < 0.

Proposition 2.3. Let 0 < y [ s [ t−1 be integers, and assume that
event

B(V̄)={us ¥ V(sD)0V((s−1) D), vy ¥ V(yD)0V((y−1) D),

us ] vy, |V(kD)|=V̄k, k=s,..., t−1}
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has a positive probability. Then

P{(us, vy) ¥ L(tD) |B(V̄)}=1− D
t

k=s+1
exp 3 −Dl2e−m D(1+t−k)

1
V̄k−1−1
4 .
(2.6)

Proof. Let us use a shorthand notation PV̄{ · }=P{ · |B(V̄)} for the
conditional probability. Taking into account Remark 2.1 and observing
that an edge between us and vy could not appear earlier than at time
((sK y)+1) D=(s+1) D, we derive according to (2.5):

PV̄{(us, vy) ¨ L(tD)}=PV̄ 3(us, vy) ¨ 0
t

k=s+1
L(kD, tD)4

= D
t

k=s+1
PV̄{(us, vy) ¨ Lus (kD, tD)}. (2.7)

Consider now for s < k [ t

PV̄{(us, vy) ¨ Lus (kD, tD)}=C
.

n=0
PV̄{(us, vy) ¨ Lus (kD, tD) | |Lus (kD, tD)|=n}

×PV̄{|Lus (kD, tD)|=n}. (2.8)

Notice that in order to fulfill the condition of the proposition we must have
V̄k−1 \ 2, since at least {us, vy} ¥ V(sD) ı V((k−1) D). Then according to
the definition of the model (see (2.3)) we have

PV̄{(us, vy) ¨ Lus (kD, tD) | |Lus (kD, tD)|=n}=
11− 1

V̄k−1−1
2n. (2.9)

Let n(k, t, D), s < k [ t, be independent Po(Dl2e−m D(1+t−k))-distributed
random variables whose probability generating functions we denote further
by gn(k, t, D). Recall, that by its definition

gn(k, t, D)(1−p)=exp{−Dl2e−m D(1+t−k)p}. (2.10)

Due to Proposition 2.2 we have conditionally on B(V̄)

|Lus (kD, tD)|=d n(k, t, D). (2.11)

Substituting (2.9) into (2.8), and taking into account (2.11) we readily derive

PV̄{(us, vy) ¨ Lus (kD, tD)}=gn(k, t, D)
11− 1

V̄k−1−1
2 , (2.12)
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which by (2.10) becomes

PV̄{(us, vy) ¨ Lus (kD, tD)}=exp
3 −Dl2

e−m D(1+t−k)

V̄k−1−1
4 . (2.13)

Combination of (2.12) and (2.7) yields

PV̄{(us, vy) ¥ L(tD)}=1− D
t

k=s+1
gn(k, t, D) 11−

1
V̄k−1−1
2 , (2.14)

which together with the formula (2.10) immediately implies the statement
of the proposition. L

It is easy to see that the properties of the Poisson process imply the
conditional independence of the edges in our model. More exactly, we state
it as follows.

Proposition 2.4. Assume that for some k > 0, t ¥ Z+, and 0 [ si < t,
i=0, 1,..., k, the event

AV̄ :={v
i
si
¥ V(siD)0V((si−1) D), 0 [ i [ k,

|V(nD)|=V̄n, min
0 [ i [ k

si [ n < t},

where v isi , i=0, 1,..., k, are k+1 different vertices, has a positive probabil-
ity. Then

P{(v0s0 , v
i
si
) ¥ L(tD), i=1,..., k |AV̄}=D

k

i=1
P {(v0s0 , v

i
si
) ¥ L(tD) |AV̄}.

(2.15)

Propositions 2.3 and 2.4 obviously yield the following result. Let us
call the vertices of the set V(s)0V(s−D) the vertices of the sth generation.

Corollary 2.1. Conditionally on an event {|V(kD)|=V̄k, 0 [ k [
t−1} the edges between the vertices of the graph Gd(tD) are independent,
and for any two vertices us and vy of the Dsth and Dyth generations,
respectively, the probability that there is an edge from us to vy is given by

P{(us, vy) ¥ L(Dt) | {us, vy} ı V((t−1) D), |V(kD)|=V̄k, 0 [ k [ t−1}

=1− D
t

k=(yK s)+1
exp 3 −Dl2e−m D(1+t−k)

1
V̄k−1−1
4 . (2.16)
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The conditional independence of the edges in the original model
follows by the general properties of the Poisson process as well.

Proposition 2.5. Conditionally on the trajectory {|V(S)|=V̄(S),
0 [ S [ T}, the edges of the graph Gd(T) are independent.

2.3. Scaling

Let S ¥ R+ and T > D be fixed arbitrarily, and set t=[
T
D
]. Here we

shall find the ‘‘most probable trajectory’’ of {|V(S+kD)|, k=0,..., t}.
Define an event

A(S, T, D)=3 : |V(S+(k+1) D)|
|V(S+kD)|

−(1+l1D) : [ D3/2, 0 [ k [ 5
T
D
6−14 .
(2.17)

The following lemma will help us to choose later on a proper scaling of D
(and T) with respect to S, so that

P{A(S, T, D)}Q 1

as SQ. (and TQ.) while DQ 0 simultaneously.

Lemma 2.1. For any V̄0 \ 1

P{A(S, T, D) | |V(S)|=V̄0} \ 11−
l1

D2 V̄0
2
5T
D
6

. (2.18)

Proof. Notice, that given |V(S+kD)|=V̄k with V̄k > 0

|V(S+(k+1) D)|=d C
V̄k

i=1
(1+gi),

where gi, i \ 1, are Po(l1D)-distributed independent random variables.
Hence, due to the Chebyshev’s inequality we have for any k \ 0, V̄k \ V̄0
and d=D3/2

P 3 : |V(S+(k+1) D)|
|V(S+kD)|

−(1+l1D) : > d : |V(S+kD)|=V̄k 4 [
l1D

d2V̄k
[
l1D

d2V̄0
.

(2.19)
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Since |V(S+kD)|, k \ 0, is a Markov chain, this allows us to derive

P 3 : |V(S+(k+1) D)|
|V(S+kD)|

−(1+l1D) : [ d, 0 [ k [ t−1 : |V(S)|=V̄0 4

\ 11− l1D
d2V̄0
2

×P 3 : |V(S+(k+1) D)|
|V(S+kD)|

−(1+l1D) : [ d, 0 [ k [ t−2 : |V(S)|=V̄0 4

\ · · · \ 11− l1D
d2V̄0
2 t. (2.20)

The statement (2.18) follows. L

3. PROOF OF THEOREM 1.1

We begin with the proof of the second statement (II) of Theorem 1.1.
The idea is to find an ‘‘optimal,’’ i.e., with a high probability of edges,
homogeneous subgraph and use the known results from the random graph
theory. Let T > 0 be fixed arbitrarily. Consider for any S > 1 a subgraph
Gd, mS (S+T) obtained from G

d, m(S+T) by removing the edges which
appeared before the time S, and removing the vertices (together with the
adjacent edges) which appeared after the time S. Thus V(S) is the set of
vertices of Gd, mS (S+T). Clearly, for all vertices of this subgraph the distri-
butions of outcoming edges are identical.
The bound (2.18) allows us to derive for any event B

P{B} \ C
V̄0 \ S

P{B |A(S, T, D), |V(S)|=V̄0}11−
l1

D2V̄0
2
5T
D
6

P{|V(S)|=V̄0}.
(3.1)

Let us fix now an event

V̄ :={|V(S+s)|=V̄s, 0 [ s [ T} ¥A(S, T, D), (3.2)

and conditionally on this event consider graph Gd, mS (S+tD). As we have
noticed, the structure of this graph is homogeneous. Therefore given
|V(S)|=V̄0 we can define V(S) to be simply a set of V̄0 different elements.
Let GdS be a directed graph associated with the multi-graph G

d, m
S . In the

sequel we shall use the following short-hand notation for the small terms
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(e.g., for the functions which converge to zero as DQ 0). Denote e(x) any
function which decays at zero so that

|e(x)| [ Cex, 0 [ x < 1, (3.3)

where positive constant Ce is independent of S, T, V̄ and D.

Lemma 3.1. Conditionally on V̄ and an event {u, v ¥ V(S)}, the
probability that there is an edge from u to v in the graph GdS(S+T) is

pGd, V̄(T)=1− exp 3 −
l2(h(T, l1, m)+e(D))

V̄0
(1+e(D1/2))(1+e(V̄−10 ))4 ,

(3.4)

with function h defined in (1.1).

Proof. Let t=[T
D
] assuming without loss of generality that 0 < D <

min{1, T}/2. Using formula (2.13) and conditional independence of the
edges we derive

pGd, V̄(T) — P 3(u, v) ¥ 0
t

k=2
Lu 15

S
D
6 D+kD, S+T 2 : u, v ¥ V(S), V̄4

=1−D
t

k=2
exp 3 −Dl2e−m D(1+t−k)

1
V̄1S−D 5 S

D
62+D(k−1)−1

4 . (3.5)

Observe that given (3.2) we have by the definition (2.17)

1
V̄1S−D 5 S

D
62+Dk−1

=
e−l1Dk

V̄0
(1+e(kD3/2))(1+e(V̄−10 )) (3.6)

for any 0 < k < t=[TD]. Substituting (3.6) into (3.5), we obtain (3.4) after
simple calculation. L

Let also Gd, mS (S+T) be a subgraph obtained from Gd, m(S+T) by
removing the edges which appeared before the time S, and removing the
vertices (together with the adjacent edges) which appeared after the time S.
Again, V(S) is the set of the vertices of graph Gd, mS (S+T). Clearly, the
graph GdS associated with Gd, mS is also homogeneous. Hence we can denote
for any u, v ¥ V(S) the probability of a directed edge from u to v in the
graph GdS(S+T) as

pd, V̄(T)=P 3(u, v) ¥ 0
t+1

k=1
Lv(S+kD, S+T) : u, v ¥ V(S), V̄4 .
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It is easy to see following the proof of (2.4) that

|pd, V̄(T)−p
G
d, V̄(T)| [

CD
V̄0

(3.7)

for some constant C. Combining this and (3.4) we obtain for any fixed
constant c > 1 and all sufficiently small D and large V̄0

pd, V̄(T) \ p
G
d, V̄(T)−

CD
V̄0

\
l2h(T, l1, m)

cV̄0
=: p. (3.8)

On the same probability space let GFn, p be a directed random graph
with n vertices, and with a probability p of the edges. For any directed
graph G let X(G) denote the length of the longest directed path in G.
Recall a known result (see Theorem 2, p. 185, Bollobás (9)) that if
0 < pn < log n−3 log log n then asymptotically almost every graph GFn, p
contains a directed path of length at least (1− 4 log 2pn ) n, i.e.,

P 3X(GFn, p) \ 11−
4 log 2
pn
2 n4Q 1 as nQ.. (3.9)

Obviously, due to (3.8) and the conditional independence of the edges
of Gd, we have for any N> 0 and all sufficiently small D and large V̄0

PV̄{X(G
d
S(S+T)) \N} \ P{X(GF V̄0, p) \N}. (3.10)

Now we derive from (3.9) and (3.10) with the value of p from (3.8)

PV̄ 3X(GdS(S+T)) \ 11−
4c log 2

l2h(T, l1, m)
2 V̄0 4Q 1 as V̄0 Q..

(3.11)

for all sufficiently small D. Notice that given (3.2) we have by the definition
(2.17)

V̄T=V̄0eDl1t(1+e(D1/2)).

Substituting this into (3.11) we obtain

PV̄ 3X(GdS(S+T)) \ 11−
4 log 3

l2h(T, l1, m)
2 e−l1TV̄T 4 > 1− E0(V̄0)
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for all sufficiently small D, where E0(V̄0) is some positive function such that
E0(V̄0)Q 0 as V̄0 Q.. The last bound together with (3.2) implies

P 3X(GdS(S+T)) \ 11−
4 log 3

l2h(T, l1, m)
2 e−l1T |V(S+T)| :

A(S, T, D), |V(S)|=V̄0 4 > 1− E0(V̄0)

for all large V̄0 and small D. Combination of the last bound and (3.1) allows
us to derive:

P 3X(GdS(S+T)) \ 11−
4 log 3

l2h(T, l1, m)
2 e−l1T |V(S+T)|4

\ C
V̄0 \ S

(1− E0(V̄0))11−
l1

D2V̄0
2
T
D

P{|V(S)|=V̄0}

\ (1− sup
x \ S
E0(x))11−

l1

D2S
2
T
D

P{|V(S)| \ S}. (3.12)

Making use of the known results on Yule process (see, e.g., Athreya and
Ney, (12) p. 109) one has a formula

P{|V(S)| \ k}=(1−e−l1S)k−1, k \ 1, S > 0. (3.13)

Letting now D=S−1/4, it is easy to see that the right-hand side of (3.12)
goes to one as SQ.. Obviously, for any N> 1

P{X(Gd(S+T)) \N} \ P{X(GdS(S+T)) \N} (3.14)

since GdS(S+T) is a subgraph of Gd(S+T). Hence statement (II) of
Theorem 1.1 follows from (3.12) as soon as we choose T=T0 to satisfy
(1.7).
Now we shall turn to the proof of the first statement of Theorem 1.1.

Here we choose T so that h(T, l1, m)=h̄(l1, m) (recall condition (1.3)).
Consider now GS(S+T) for S > 1. Let pV̄(T) denote the probability of
edge between two arbitrary vertices u and v in the graph GS(S+T). Clearly,
due to the conditional independence of the edges we have

pV̄(T)=1−(1−pd, V̄(T))2,

as well as

pGV̄(T)=1−(1−p
G
d, V̄(T))

2, (3.15)
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which allows us to derive with a help of (3.7)

|pV̄(T)−p
G
V̄(T)| [ 3C

D

V̄0
.

Then we derive from (3.4) and (3.15) that for any fixed cŒ > 1 and for all
sufficiently small D and large V̄0

pV̄(T) \ p
G
V̄(T)−3C

D

V̄0
\
2l2h(T, l1, m)

cŒV̄0
=
2l2 h̄(l1, m)
cŒV̄0

,

which under the condition (1.3) proves the existence of some constant
pŒ > 1 such that for all sufficiently small D and large V̄0

pV̄(T) \
pŒ
V̄0
. (3.16)

Let Gn, p denote a random graph with n vertices and with a probability
p=pŒ/n of the edges. Set further M(G) to be the order of the largest
component in a graph G. Due to Theorem 5.4 by Janson et al., (10) p. 109, if
pŒ > 1 then

P{M(Gn, p) \ (1+o(1)) bn}Q 1 as nQ., (3.17)

where positive constant b satisfies the equation

b+e−bpŒ=1.

Clearly, together with (3.16) this implies for all sufficiently small D

PV̄{M(GS(S+T1)) \ (1+o(1)) bV̄0}

\ P{M(GV̄0, p) \ (1+o(1)) bV̄0}Q 1 (3.18)

as V̄0 Q.. Then we derive the first statement (I) of Theorem 1.1 using
(3.18), just by repeating the same argument as we derived the second
statement using (3.11). L

Remark 1.1 is merely due to the formulae (3.12) and (3.14) in the
above proof.

4. PROOF OF THEOREM 1.2

Consider graph Gd(S+T), where S > 0 and T > 0. Let k \ 3 be fixed
arbitrarily, and let C (S)k (S+T) denote the number of k-cycles composed
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entirely of the edges whose age is less than T. Let also C (< S)k (S+T) be the
number of k-cycles which contain at least one edge of the age greater or
equal T. Thus the total number of the k-cycles in the graph Gd(S+T) is

Ck(S+T)=C
(S)
k (S+T)+C

(< S)
k (S+T). (4.1)

From now on assume that

S > 1, T=S3/2, D=S−3(k+2)/2, (4.2)

and for these values we define A(S)=A(S, T, D) as in (2.17). Recall that
according to (2.18)

P{A(S) | |V(S)|=V̄0} \ 11−
l1

S−3(k+2)V̄0
2S

3(k+3)/2

.

This yields

P{A(S)} \ 11− l1
S3/2
2S

3/2+3(k+2)/2

P{|V(S)| > S3(k+2)+3/2}

\ 11− c
S3(k+2)/2
2 P{|V(S)| > S3(k+2)+3/2},

where c is some positive constant independent of S. This bound in combi-
nation with (3.13) proves that

P{A(S)}Q 1 as SQ.. (4.3)

Observe, that the following equality holds

lim
SQ.

ECk(S)= lim
SQ.

EC (S)k (S+S
3/2) 1A(S)

+ lim
SQ.

EC (< S)k (S+S3/2) 1A(S)+ lim
SQ.

ECk(S+S3/2) 1W0A(S),
(4.4)

provided the existence of all three limits in the right-hand side; 1B denotes
here an indicator function of an event B. In the following we shall study
the last three terms separately. In fact, we will show that only the first term
in the right-hand side of (4.4) provides a non-zero contribution while the
last two limits exist and equal zero.
Let us fix l1 > 0 and m > 0 arbitrarily, and for the simplicity of nota-

tions we shall write since now on h(T)=h(T, l1, m).
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Lemma 4.1. For any fixed finite k

lim
SQ.

EC (S)k (S+S
3/2) 1A(S)

=
1
k
lk2 F

.

0
· · · F

.

0

1D
k

i=1
e−si exp{(si N si+1)} h 1

si
l1

N
si+1
l1
22 ds1 · · · dsk.

(4.5)

Before we proceed with a proof of this lemma we shall obtain some
useful results on the probabilities of edges. Conditionally on the trajectory

V̄={|V(S+s)|=V̄s, 0 [ s [ T} ¥A(S), (4.6)

we define d0(V)=V(S) to be simply a set of |d0(V)|=V̄0 different elements.
We shall also define conditionally on V̄

di(V)=V(S+Di)0V(S+D(i−1)), 1 [ i < 5T
D
6=: t,

and dt(V)=V(S+T)0V(S+D(t−1)) to be the sets of vertices labeled by
the moments of appearance provided by the condition V̄. The cardinalities
of these sets are |di(V)|=V̄iD−V̄(i−1) D, and |dt(V)|=V̄T−V̄(t−1) D, respec-
tively.
Let us denote here L((s, sŒ], t) ıL(t) the subset of the edges of

graph Gd, m(t) which appeared during the time interval (s, sŒN t]. Consider
now the following subgraph

G2 d, mS (S+T) :=(V(S+T),L((S, S+T], S+T)) (4.7)

obtained from Gd, m(S+T) by removing the edges whose age is greater or
equal T. Notice that this subgraph is defined on the entire set of vertices
V(S+T), which conditionally on V̄ is V(S+T)=1 t

i=0 di(V).
Let us ¥ ds(V) and vy ¥ dy(V), where 0 [ y, s [ t. Conditionally on V̄ let

us denote here pG(us, vy) and p(us, vy) the probabilities of the edge from
us to vy in the graphs Gd(S+T) and Gd(S+T), correspondingly. Let also
p̃(us, vy) denote the probability of the edge from us to vy in the graph
G2 dS(S+T). Substituting (3.6) into (2.16) we derive in the case sKy > 0:

pG(us, vy)=
l2(h(T−(sKy) D)+e(D))

V̄(sK y) D
(1+e(D1/2T))(1+e(V̄−10 )). (4.8)

Notice that if sK y > 0 then any edge between us and vy in the original
graph Gd, m(S+T) has the age less than T, and therefore this edge belongs
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to the edges of the subgraph G2 d, mS (S+T) as well. Thus combining (4.8)
with (2.4) we obtain in the case sKy > 0

p(us, vy)=p̃(us, vy)

=
l2(h(T−(sK y) D)+e(D))

V̄(sK y) D
(1+e(D1/2T))(1+e(V̄−10 ))

=: f((sK y) D), (4.9)

where f is just a short-hand notation of the preceding function. Next
observe that the probability of an edge between two arbitrary vertices u0, v0
of the subset d0(V) of the vertices of the graph G2

d
S(S+T) is

p̃(u0, v0)=1−PV̄{(u0, v0) ¨L((S, S+T], S+T)}.

Taking into account the rate of approximation and making use of formula
(2.13) we derive from here

p̃(u0, v0)=
l2(h(T)+e(D))

V̄0
(1+e(D1/2T))(1+e(V̄−10 ))=: f(0). (4.10)

For the further reference consider here also the probability p(u0, v0)
where u0, v0 ¥ d0(V), in the graph Gd(S+T). Due to the conditional inde-
pendence of the edges we have

p(u0, v0)=1−PV̄{(u0, v0) ¨L((S, S+T], S+T)}

×PV̄{(u0, v0) ¨L((0, S), S+T)}

=f(0)+(1−f(0)) PV̄{(u0, v0) ¥L((0, S), S+T)}. (4.11)

Using (2.13) we can easily obtain a uniform bound for the probabilities of
edges whose age is greater or equal T:

PV̄{(u0, v0) ¥L((0, S), S+T)} [ Ae−mT, (4.12)

where A > 0 is a constant independent of T. This together with (4.11)
clearly implies

p(u0, v0) [ f(0)+Ae−mT. (4.13)

Proof of Lemma 4.1. For simplicity we shall use here notations
(4.2). For any graph G and cycle C let {C ¥ G} denote the event that graph
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G contains this cycle. Then given (4.6) with V̄0 > k we have in the notations
(1.8)

EV̄C
(S)
k (S+T)=

1
k

C
(v1,..., vk): v j ¥1ti=0 di(V)

PV̄{C(v1,..., vk) ¥ G2 dS(S+T)},
(4.14)

where EV̄ is a conditional expectation with respect to the event V̄, and the
sum runs over the ordered sets of k different vertices. Due to the conditio-
nal independence of the edges we have

PV̄{C(v1,..., vk) ¥ G2 dS(S+T)}=p̃(v
k, v1) D

k−1

i=1
p̃(v i, v i+1). (4.15)

Let Pk denote the set of all permutations (p(1),..., p(k)), and let also
p(k+1) — p(1). Further for any p ¥Pk and v=(v1,..., vk) we define
p(v)=(vp(1),..., vp(k)). Now we can rewrite (4.14) as

EV̄C
(S)
k (S+T)

=
1
k

C
0 [ nk [ · · · [ n1 [ t

C
{v1,..., vk}: vi ¥ dni

(V)

C
p ¥Pk

PV̄{C(p(v)) ¥ G2 dS(S+T)},
(4.16)

where the second sum runs over the non-ordered sets of k different vertices.
Then according to (4.15) together with (4.9) and (4.10) we derive:

EV̄C
(S)
k (S+T)

=
1
k

C
0 [ nk [ · · · [ n1 [ t

C
{v1,..., v k}: v i ¥ dni

(V)

C
p ¥Pk

D
k

i=1
f((np(i) Knp(i+1)) D)

=
1
k
1 |d0(V)|
k
2 C
p ¥Pk

D
k

i=1
f(0)

+
1
k

C
k−1

l=0

1 |d0(V)|
l
2 C
nk=· · ·=nk−l+1=0 < nk−l < · · · < n1 [ t

D
k−l

i=1
|dni (V)|

× C
p ¥Pk

D
k

i=1
f((np(i) Knp(i+1)) D)

+
1
k

C
k−2

l=0

1 |d0(V)|
l
2 CŒ C

{v1,..., v k}: v i ¥ dni
(V)

C
p ¥Pk

D
k

i=1
f((np(i) Knp(i+1)) D),

(4.17)
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where for each 0 [ l [ k−2 the sum ;Œ runs over the vectors (nk,..., n1)
such that nk=·· ·=nk−l+1=0 unless l=0, and there are ties among the
numbers nk−l,..., n1, i.e.,

nk=·· ·=nk−l+1=0< nk−l [ · · · [ n1 [ t:

ni=nj for some 1 [ i < j [ k−l.

Note that (4.6) and (2.17) yield

|dni (V)|=V̄niD−V̄(ni −1) D=Dl1 V̄niD(1+e(D
1/2)), (4.18)

and also

V̄niD=V̄0e
Dl1ni(1+e(niD3/2)). (4.19)

Substituting (4.18) into (4.17) we get

EV̄C
(S)
k (S+T)=

1
k
1 V̄0
k
2 k! fk(0)+1

k
C
k−1

l=0
C
p ¥Pk

3(1+e(D1/2)) lk−l1

× C
nk=· · ·=nk−l+1=0 < nk−l < · · · < n1 [ t

Dk−l 1 V̄0
l
21D

k−l

i=1
V̄niD
2

×D
k

i=1
f((np(i) Knp(i+1)) D)+Dk(p, l)4 , (4.20)

where Dk(p, k−1)=0, and for all 0 [ l [ k−2

Dk(p, l)= C
k−l−1

m=1
C

(i1,..., im): i1+· · ·+im=k−l, ij \ 1
Dk(p, l, m, ı̄), (4.21)

with

Dk(p, l, m, ı̄)=C 1 V̄0
l
21D

m

j=1

1 |dni1+i2+· · ·+ij (V)|
ij
221D

k

i=1
f((np(i) Knp(i+1)) D)2 ,

where the sum runs over all n1,..., nk such that

nk=·· ·=nk−l+1=0< ni1+i2+· · ·+im=·· ·=ni1+i2+· · ·+im−1+1

< · · · < ni1+i2=·· ·=ni1+1 < ni1=·· ·=n1 [ t.
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Substituting (4.9) and (4.10) into (4.20), and using (4.19), we derive

EV̄C
(S)
k (S+T)=

1
k
lk2(h(T)+e(D))

k (1+e(D1/2T))(1+e(V̄−10 ))

+
1
k

C
k−1

l=0
C
p ¥Pk

3(1+e(D1/2))(1+e(V̄−10 )) lk−l1

1
V̄ l0
1 V̄0
l
2

× C
nk=· · ·=nk−l+1=0 < nk−l < · · · < n1 [ t

Dk−llk2(1+e(D
1/2T))

×1D
k−l

i=1
eDl1ni 2 D

k

i=1
exp{−Dl1(np(i) Knp(i+1))}

×(h(T−(np(i) Knp(i+1)) D)+e(D))+Dk(p, l)4 . (4.22)

Due to the uniform in T (recall that T > 1 by the assumption) boundedness
of the following below integrals (4.24), the last formula yields

EV̄C
(S)
k (S+T)=

1
k
lk2(h(T)+e(D))

k (1+e(D1/2T))(1+e(V̄−10 ))

+
1
k

C
k−1

l=0
C
p ¥Pk

3(1+e(D1/2T))(1+e(V̄−10 )) lk2lk−l1

×
1
l!
Ikl(p, T)+Dk(p, l)4+e0(D), (4.23)

where e0(D)Q 0 as DQ 0, and for every 0 [ l [ k−1

Ik l(p, T)=F · · ·F
0 [ sk−l [ · · · [ s1 [ T

1D
k

i=1
el1 si 2 D

k

i=1
exp{−l1(sp(i) K sp(i+1))}

×(h(T−(sp(i) K sp(i+1)))+e(D)) dsk−l · · · ds1, (4.24)

with sk−l+1=·· ·=sk=0 unless l=0. First we shall show that the integrals
Ik l(p, T) for every 0 [ l [ k−1 are indeed bounded uniformly in T > 1.
With a change of variables rewrite integral Ik l(p, T) as

Ik l(p, T)=F · · ·F
0 [ s1 [ · · · [ sk−l [ T

1D
k

i=1
e−l1 si 2

×1D
k

i=1
exp{l1(sp(i) N sp(i+1))}(h(sp(i) N sp(i+1))+e(D))2 ds1 · · · dsk−l,

(4.25)
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where sk−l+1=·· ·=sk=T unless l=0. Notice that

el1s h(s)=
e (l1 −m) s−1
l1−m

, (4.26)

is an increasing function in s. Recall also a bound |e(D)| [ aD where the
constant a > 0 is independent of T (and of i, l and p). Thus by (4.25) we
have uniformly in p

Ik 0(p, T) [ F
T

0
F
sk

0
· · ·F

s2

0

1D
k

i=1
e−l1 si 21D

k

i=1
el1 si (h(si)+aD)2 ds1 · · · dsk

<
1
k!
1F.
0
h(s) ds+aDT2

k

=
1
k!
1 1
l1 m
+aDT2

k

, (4.27)

which under the scaling (4.2) implies a uniform bound in T

Ik 0(p, T) [
1
k!
1 1
l1 m
+a2

k

. (4.28)

Also, it is easy to check producing similar to (4.27) bounds that we have
under the scaling (4.2)

Ik 0(p, T)=F
T

0
F
sk

0
· · ·F

s2

0

1D
k

i=1
e−l1 si 2

×1D
k

i=1
exp{l1(sp(i) N sp(i+1))} h(sp(i) N sp(i+1))2 ds1 · · · dsk+e(DT).

(4.29)

Next for every 1 [ l [ k−1 we derive from (4.25) using again (4.26)

Ik l(p, T) [ (h(T)+aD) l−1 e−l1T F · · ·F
0 [ s1 [ · · · [ sk−l [ T

1D
k−l

i=1
e−l1 si 2

×el1 s1(h(s1)+aD)1D
k−l

i=1
el1 si(h(si)+aD)2 ds1 · · · dsk−l

=: (h(T)+aD) l−1 e−l1T Ĩk−l. (4.30)

Long Paths and Cycles in Dynamical Graphs 409



Consider separately

e−l1T Ĩn [
e−l1T

(n−1)!
F
T

0
el1 s1(h(s1)+aD)2 1F

T

0
(h(s)+aD) ds2

n−1

ds1

<
max t > 0 h(t)+aD

(n−1)!
1 1
l1 m
+aDT2

n−1

×1aDT+e−l1T FT
0
el1 yh(y) dy2 . (4.31)

Trivial computation yields under the scaling (4.2) a bound

e−l1TĨn [ C(DT+e−min{l1/2, m} T), 1 [ n [ k−1,

for some positive constant C independent of T, which together with (4.30)
yields under the scaling (4.2):

Ik l(p, T) [ C
k
1(DT+e

−min{l1/2, m} T), 1 [ l [ k−1 (4.32)

for some positive constant C1 independent of T (or S) and p. Similarly we
obtain for all large enough V̄0 and small D:

Dk(p, l, m, ı̄) [ B
k
1l
k
2D
k−l−m F · · ·F

0 [ s1 [ · · · [ sm [ T

1D
m

j=1
e−l1 ij sj 2

×1D
m

j=1
el1 ij sj (h(sj)+aD) ij 2 ds1 · · · dsm

< Bk1l
k
2D
k−l−m D

m

j=1
F
T

0
(h(s)+aD) ij ds

[ Ak1l
k
2D
k−l−m, (4.33)

where B1 and A1 are some constants depending on l1 and m only. Substi-
tuting this bound into the definition (4.21) we get uniformly in p and
0 [ l [ k−2

Dk(p, l) [ A
k
3D (4.34)

for some constant A3=A3(l1, m) independent of D. Now armed with bounds
(4.32) and (4.34) we are able to derive from (4.23) under the scaling (4.2)

EV̄C
(S)
k (S+T)=

1
k

C
p ¥Pk

(1+e(V̄−10 ))(1+e(D
1/2T))

×(l1l2)k Ik0(p, T)+e0(D)+e(D). (4.35)
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It follows from (4.35) and the bound (4.28), that EV̄C
(S)
k (S+S

3/2) is uni-
formly bounded in S > 1 and in V̄ ¥A(S). Thus with a help of (3.13) we
get

lim
SQ.

EC (S)k (S+S
3/2) 1A(S)1{|V(S)| [ S}=0. (4.36)

Now under the assumption (4.2) we easily derive from (4.35) and (4.36)
taking into account (4.29)

lim
SQ.

EC (S)k (S+S
3/2) 1A(S)

= lim
SQ.

EC (S)k (S+S
3/2) 1A(S)1{|V(S)| > S}

= lim
SQ.

1
k
(l1l2)k C

p ¥Pk

Ik 0(p, S3/2)

=
1
k
(l1l2)k C

p ¥Pk

F
.

0
F
sk

0
· · ·F

s2

0

1D
k

i=1
e−l1 si 2

×1D
k

i=1
exp{l1(sp(i) N sp(i+1))} h(sp(i) N sp(i+1))2 ds1 · · · dsk

for any fixed finite k. This implies (4.5) and finishes the proof of Lemma 4.1.
L

Clearly, this result and (4.4) will yield the statement of Theorem 1.2 as
soon as we show that the last two limits in (4.4) exist and equal zero. This
will be the subject of two following lemmas.

Lemma 4.2. For any finite k \ 3

lim
SQ.

ECk(S+S3/2) 1W0A(S)=0. (4.37)

Proof. In the following we use again the notations (4.2). Let a
trajectory V̄={|V(t)|=V̄t, 0 < t [ S+T} be fixed arbitrarily but so that
P{V̄} > 0. Conditionally on V̄ let us denote pV̄(us, vy) the probability of an
edge in the graph Gd(S+T) from a vertex us ¥ V(s)0V(s−D) to a vertex
vy ¥ V(y)0V(y−D), where 0 < s, y < S+T. Then according to (2.16) and
(2.4) we have the following bound:

pV̄(us, vy) [ A1 1
D

V̄yK s
+ C
5S+T
D
6

n=5 yK s
D
6+1

De−m(S+T−Dn)
1

V̄D(n−1)
2=: g(yK s) (4.38)
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for some constant A1 independent of s, y and S. Now similar to (4.17) we
obtain

EV̄Ck(S+T) [
1
k

C
0 < nk [ · · · [ n1 [

5S+T
D
6

C
{v1,..., vk}: v i ¥ V(niD)0V((ni −1) D)

× C
p ¥Pk

D
k

i=1
g((np(i) Knp(i+1)) D),

where conditionally on V̄ we treat V(niD)0V((ni−1) D) simply as a set of
V̄niD−V̄(ni −1) D different elements as we have done earlier. Continuing this
bound we derive taking into account that g(s) is a decreasing function

EV̄Ck(S+T) [ (k−1)! A
k
2 C

k

m=1
C

0 < nm < · · · < n1 [
5S+T
D
6

× C
(i1,..., im): i1+· · ·+im=k, ij \ 1

D
m

j=1
((V̄njD−V̄(nj −1) D) g(njD))

ij,
(4.39)

for some constant A2 independent of S. Since the function

(V̄njD−V̄(nj −1) D) g(njD)

=A1D 11−
V̄(nj −1) D
V̄njD
2+A1 C

5S+T
D
6

n=nj+1
De−m(S+T−Dn)

(V̄njD−V̄(nj −1) D)

V̄D(n−1)
(4.40)

is positive and bounded uniformly in V̄, 0 [ D < 1 and S > 1, we derive
from (4.39)

EV̄Ck(S+T) [ A3 C
k

m=1
C

0 < nm < · · · < n1 [
5S+T
D
6

× C
(i1,..., im): i1+· · ·+im=k, ij \ 1

D
m

j=1
((V̄njD−V̄(nj −1) D) g(njD))

[ A4 C
k

m=1
D
m

j=1
C
5S+T
D
6

nj=0
(V̄njD−V̄(nj −1) D) g(njD)

=A4 C
k

m=1

1 C
5S+T
D
6

l=0
(V̄lD−V̄(l−1) D) g(lD)2

m

,
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where the positive coefficients A3 and A4 are independent of S (but depend
on k and the parameters of the model). Recalling formula (4.40) we get
now with a help of Lyapunov’s inequality

EV̄Ck(S+T) [ A5 C
k

m=1

1D C
5S+T
D
6

n=0

11−V̄(n−1) D
V̄nD
22m

+A5 C
k

m=1

1 C
5S+T
D
6

n=1
D
e−m (S+T−Dn)

V̄D(n−1)
C
n−1

l=0
(V̄lD−V̄(l−1) D)2

m

[ A6 C
k

m=1
Dm 1S+T

D
2m−1 C

5S+T
D
6

n=0

11−V̄(n−1) D
V̄nD
2m+A6, (4.41)

where the positive coefficients A5 and A6 are independent of S. This bound
implies

ECk(S+T) 1W0A(S)

[ A6 C
k

m=1
D (S+T)m−1 C

5S+T
D
6

n=0
E 11− |V((n−1) D)|

|V(nD)|
2m

+A6(1−P{A(S)}). (4.42)

Using formula (3.13) it is easy to derive for any 1 [ m [ k and n \ 0

E 11− |V((n−1) D)|
|V(nD)|
2m [ A7D

for some positive constant A7=A7(k, l1) independent of S and n \ 0.
Substituting this bound into (4.42) we obtain

ECk(S+T) 1W0A(S) [ A6A7 C
k

m=1
D(S+S3/2+1)m+A6(1−P{A(S)}),

(4.43)

where D=S−3(k+2)/2 according to (4.2). Thus the last bound together with
(4.3) immediately yields the statement (4.37). L

Lemma 4.3. For any finite k \ 3

lim
SQ.

EC (< S)k (S+S3/2) 1A(S)=0. (4.44)
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Proof. Note that in the graph Gd(S+T) the only vertices between
which there might be an edge of age greater or equal T are the vertices in
the set V(S). Define for every 2 [ l [ k−1 and p ¥Pk with p(k+1) — p(1)
a set

Ml(p)={1 [ i [ k : {p(i), p(i+1)} ¥ {k−l+1,..., k}}.

Let V̄ ¥A(S) be fixed arbitrarily. Obviously, we have a bound

EV̄C
(< S)
k (S+T) [

1
k

C
(v1,..., vk) : vi ¥ d0(V)

PV̄ {C(v1,..., vk) ¥ Gd(S+T)}

+
1
k

C
k−1

l=2
C

0=nk=· · ·=nk−l+1 < nk−l [ · · · [ n1 [ t

× C
{v1,..., vk}: vi ¥ dni

(V)
C

p ¥Pk :Ml(p) ]”
PV̄{C(p(v)) ¥ Gd(S+T)},

(4.45)

where t=[T
D
], (v1,..., vk) denotes a vector, and {v1,..., vk} denotes a set.

Then similar to (4.20) and (4.22) we derive using formula (4.9) and bound
(4.13):

EV̄C
(< S)
k (S+T) [ B1V̄

k
0
1h(T)+aD

V̄0
+Ae−m T2

k

+B1 C
k−1

l=2
C

p ¥Pk :Ml(p) ]”
V̄ l0 1

h(T)+aD
V̄0

+Ae−m T2
|Ml(p)|

× C
0 < nk−l [ · · · [ n1 [ t

C
{vk−l,..., vk}: vi ¥ dni

(V)

×1 D
i ¨Ml(p)

f((np(i) Knp(i+1)) D)2 , (4.46)

where for each lth term 0=nk=·· ·=nk−l+1, and the positive constants
a and B1 are independent of T and S. We write here i ¨Ml(p) meaning
i ¥ {1,..., k}0Ml(p). Now for each 2 [ l [ k−1 we shall bound from above
the sum of the terms in (4.46) which contain no ties among nk−l,..., n1.
Thus for any 2 [ l [ k−1 and Ml(p) ]” we obtain using (4.18) and
(4.19), as well as taking into account the uniform boundedness of the
following below integral (4.48)
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V̄ l− |Ml(p)|0 C
0 < nk−l < · · · < n1 [ t

C
{vk−l,..., vk}: vi ¥ dni

(V)

D
i ¨Ml(p)

f((np(i) Knp(i+1)) D)

[ B2V̄
l− |Ml(p)|
0 C

0 < nk−l < · · · < n1 [ t

1D
k−l

i=1
DV̄niD
2 D
i ¨Ml(p)

f((np(i) Knp(i+1)) D)

[ B2JT(k, l, p)+B
−

2, (4.47)

for all large V̄0 and small D, where B2 and B
−

2 are some positive constants
independent of T and S, and

JT(k, l, p)=F · · ·F
0 [ sk−l [ · · · [ s1 [ T

1D
k−l

i=1
el1 si 2

×1 D
i ¨Ml(p)

exp{−l1(sp(i) K sp(i+1))}

×(h(T−(sp(i) K sp(i+1)))+aD)2 dsk−l · · · ds1,

with sk−l+1=·· ·=sk=0. With a change of variables rewrite this integral
as

JT(k, l, p)=F · · ·F
0 [ s1 [ · · · [ sk−l [ T

e−l1(l− |Ml(p)|) T 1D
k−l

i=1
e−l1 si 2

×1 D
i ¨Ml(p)

exp{l1(sp(i) N sp(i+1))}

×(h(sp(i) N sp(i+1))+aD)2 ds1 · · · dsk−l, (4.48)

where sk−l+1=·· ·=sk=T. Trivial, but worth noticing that |Ml(p)| [ l for
all l [ k−1 and p. Using (4.26) we derive from here the following bound

JT(k, l, p) [ (max
0 [ s [ T

h(s)+aD) l− |Ml(p)|

×F · · ·F
0 [ s1 [ · · · [ sk−l [ T

1D
k−l

i=1
(h(si)+aD)2 ds1 · · · dsk−l

< (max
0 [ s [ T

h(s)+aD) l− |Ml(p)|
1

(k−l)!
1 1
l1 m
+aDT2

k−l

,
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which due to the scaling (4.2) and boundedness of the functions h yields

JT(k, l, p) < B3, (4.49)

where B3 is some positive constant independent of S. With a similar
argument it is not difficult to derive (as we did to get (4.34)) a bound for
the rest of the terms in (4.46) for all 2 [ l [ k−2:

V̄ l− |Ml(p)|0 C
0 < nk−l [ · · · [ n1 [ t : ni=nj for some 1 [ i < j [ k−l

× C
{vk−l,..., vk}: vi ¥ dni

(V)

1 D
i ¨Ml(p)

f((np(i) Knp(i+1)) D)2 [ B4D, (4.50)

for some constant B4 independent of S and T. Combining (4.50), (4.49) and
(4.47) with (4.46) we readily derive taking into account the scaling (4.2)

EV̄C
(< S)
k (S+T) [ B5 C

k

m=1
(h(T)+aD+AV̄0e−m T)m, (4.51)

where B5 is some positive constant independent of S. This bound together
with the scaling (4.2) yields

EC (< S)k (S+S3/2) [ B6 C
k

m=1
(hm(S3/2)+S−m3(k+2)/2+e−m m S

3/2
E |V(S)|m)

(4.52)

where positive constant B6 is independent of S. Using formula (3.13) it is
easy to get for any 1 [ m [ k

E |V(S)|m < B7e2l1mS

for some constant B7=B7(k, l1) independent of S. Substituting this bound
into (4.52) and passing to the limit as SQ., we immediately obtain the
statement of Lemma 4.3. L

The results of the last two lemmas together with (4.5) and (4.4)
complete the proof of Theorem 1.2. L

Remark 1.4 follows by Lemma 3.1.
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